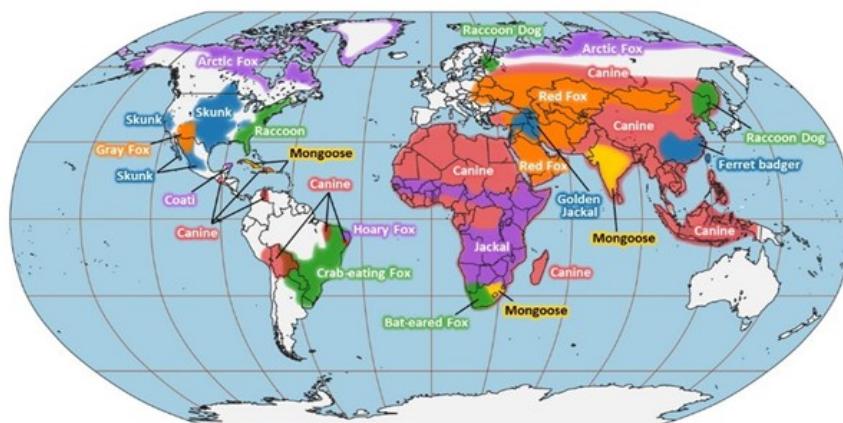

# EPI WATCH

Monthly Epidemiology Newsletter

## World Rabies Day


By: Rachel Ilic, MPH, CPH, CIC

Each year, World Rabies Day is celebrated on September 28 to raise awareness about rabies prevention and to honor Louis Pasteur, who developed the vaccine in 1885. Every year, rabies kills 70,000 people worldwide, despite the disease being preventable<sup>1</sup>. More than 99% of human rabies deaths outside of the United States are from dog bites or scratches.



Retrieved from: <https://www.cdc.gov/rabies/around-world/index.html>

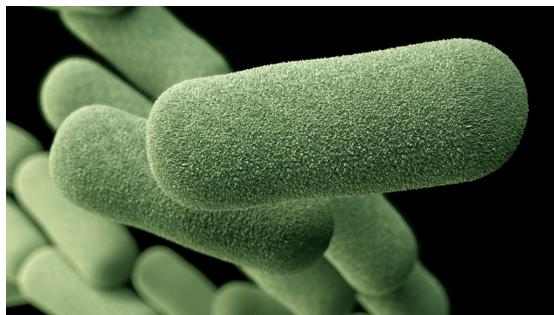
The image below indicates the most likely source of rabies infection around the world. Although dogs are the main vector, other wildlife animals such as bats, foxes, jackals, mongooses, and skunks, among others, transmit rabies as well.



Retrieved from: <https://www.cdc.gov/rabies/around-world/index.html>

While the species vary around the world, it is important to remember that regardless of which type of animal a person encounters, any mammal can transmit rabies and therefore, a thorough history must be reviewed when identifying the need for post exposure prophylaxis.

In the United States, the National Rabies Management Program was established in recognition of the changing scope of rabies. The goal of the program is to prevent the further spread of wildlife rabies and eventually eliminate terrestrial rabies in the US through an integrated program that involves the use of oral rabies vaccination targeting wild animals. This program targets the raccoon variant, canine variant in coyotes and a unique variant of gray fox rabies.


Over the past 30 years, rabies management has grown in complexity in the United States, as wild animals, including skunks, raccoons, foxes, coyotes, and bats, have replaced the domestic dog as the primary reservoir for the disease.

### Resources:

<sup>1</sup><https://www.cdc.gov/rabies/around-world/index.html>

# Haemophilus influenzae

By: Stephen Marlin, MPH, CPH



*Haemophilus influenzae* is a bacterium that can cause severe infections, with very young children having the highest risk of disease. *H. influenzae* spreads through direct person-to-person contact, entering the body through airborne droplets or direct contact with respiratory secretions. Once introduced, the bacteria can enter and colonize the nasopharynx of an individual and remain there for several months. Neonates can acquire the infection during delivery through amniotic fluid or through contact with genital tract secretions.

The most common clinical manifestations resulting from severe *H. influenzae* infections are meningitis, bronchitis, epiglottitis, pneumonia, arthritis, and cellulitis. Reports of *H. influenzae* tend to follow a seasonal pattern, with increased cases typically occurring during autumn (September through December) and spring (March through May). Although person-to-person transmission beyond the initial

case is uncommon, several factors may elevate infection risk, including overcrowded living conditions, large family units, daycare exposure, underlying health conditions, or immunosuppressive therapy.

In the late 19th century, researchers initially believed that *H. influenzae* was responsible for influenza outbreaks. Richard Pfeiffer first documented the organism in 1892, when he identified it in respiratory samples from influenza patients, leading him to suggest a connection between the bacterium and the flu-like illness. Charles-Edward Winslow and colleagues assigned the name *Haemophilus* to the organism in 1920. The true viral cause of influenza wasn't established until 1933, revealing that *H. influenzae* was causing secondary bacterial infections<sup>1</sup>.

Prior to widespread immunization, *H. influenzae* was commonly found in the nasopharynx of healthy children and would resolve without causing disease. *H. influenzae* was common enough, however, that the bacterium was still historically the most common cause of bacterial meningitis, and was a primary cause of many other bacterial diseases as well<sup>1</sup>.

*H. influenza* invasive disease has presented most commonly among the youngest children. Severe manifestations were typically seen in children under the age of 5 years; within that group, the majority of cases were children younger than 18 months, and even further, the greatest burden of disease was typically seen among those children 6 to 11 months old<sup>1</sup>.

*H. influenzae* strains are classified as encapsulated (typable) or unencapsulated (non-typable). Of the typable strains, they are further classified by one of six distinct polysaccharides that present on the bacterial capsule (known as types a, b, c, d, e, and f). Through cerebrospinal fluid analysis conducted by Margaret Pittman in the 1930's, it was determined that almost all cases of invasive disease were capsular and type b, also known as *Haemophilus influenzae* type b or Hib. After the introduction of Hib conjugate immunization in 1987, the case incidence of invasive disease decreased by 99%, resulting in a national annual rate of fewer than 2 cases per 100,000 population for the last several decades<sup>4</sup>. The majority of reported invasive *Haemophilus* infections that occur today are from non-typable strains, which Hib immunization does not confer protection against. Although case rates are low, this disease has not been eradicated. Florida sees roughly 300 cases of *H. influenzae* invasive disease on average each year, and the population adjusted rate may be increasing<sup>5</sup>.

The Centers for Disease Control and Health Protection's *Haemophilus influenzae* Pediatric Supplemental Surveillance Report provides an overview of case reports from 14 participating states<sup>3</sup>. In 2023 (the most recent available national summary), 661 cases of invasive *Haemophilus influenzae* disease were reported among children aged <5 years throughout the United States<sup>3</sup>. Of 171 analyzed cases, the highest incidence occurred in those 1-11 months of age (n=56). Clinical syndromes were reported for 148 cases, and of those, 67 experienced bacteremia, 30 exhibited meningitis, 25 experienced pneumonia, and 26 had other syndromes. Overall, the case fatality rate (per 100 cases with known outcome) was 12.4.

Invasive *Haemophilus influenzae* infections became nationally notifiable in 1991. The Florida Department of Health continues to monitor this disease of significant public health concern.

## Resources:

<sup>1</sup>[https://www.cdc.gov/pinkbook/hcp/table-of-contents/chapter-8-haemophilus-influenzae.html#:~:text=Haemophilus%20influenzae%20type%20b%20\(Hib\),Causes%20severe%20bacterial&text=It%20was%20first%20described%20by,clinical%20syndrome%20known%20as%20influenza](https://www.cdc.gov/pinkbook/hcp/table-of-contents/chapter-8-haemophilus-influenzae.html#:~:text=Haemophilus%20influenzae%20type%20b%20(Hib),Causes%20severe%20bacterial&text=It%20was%20first%20described%20by,clinical%20syndrome%20known%20as%20influenza).

<sup>2</sup><https://ndc.services.cdc.gov/case-definitions/haemophilus-influenzae-invasive-disease-2015/>

<sup>3</sup><https://www.cdc.gov/hi-disease/media/images/Hifigure3.png>

<sup>4</sup><https://www.cdc.gov/MMWR/preview/mmwrhtml/rr6301a1.htm>

<sup>5</sup><https://www.flhealthcharts.gov/charts/LoadPage.aspx?l=rdPage.aspx?rdReport=NonVitalIndNoGrp.DataViewer&cid=0167>

# Select Reportable Diseases in Pinellas County

| Disease                                              | Pinellas |          | YTD Total     |              | Pinellas County Annual Totals |       |        |
|------------------------------------------------------|----------|----------|---------------|--------------|-------------------------------|-------|--------|
|                                                      | Aug 2025 | Aug 2024 | Pinellas 2025 | Florida 2025 | 2024                          | 2023  | 2022   |
| <b>A. Vaccine Preventable</b>                        |          |          |               |              |                               |       |        |
| Coronavirus 2019                                     | 2030     | 2902     | 7271          | 165432       | 19906                         | 45495 | 110629 |
| Measles                                              | 0        | 0        | 0             | 6            | 0                             | 0     | 0      |
| Mpox                                                 | 1        | 2        | 2             | 31           | 12                            | 6     | 155    |
| Mumps                                                | 0        | 0        | 0             | 8            | 2                             | 0     | 0      |
| Pertussis                                            | 10       | 4        | 71            | 1222         | 38                            | 1     | 2      |
| Varicella                                            | 0        | 1        | 11            | 338          | 157                           | 25    | 24     |
| <b>B. CNS Diseases &amp; Bacteremias</b>             |          |          |               |              |                               |       |        |
| Creutzfeldt-Jakob Disease (CJD)                      | 0        | 0        | 2             | 25           | 3                             | 1     | 3      |
| Meningitis (bacterial, cryptococcal, mycotic)        | 0        | 1        | 2             | 99           | 16                            | 6     | 11     |
| Meningococcal Disease                                | 0        | 0        | 0             | 20           | 1                             | 3     | 2      |
| <b>C. Enteric Infections</b>                         |          |          |               |              |                               |       |        |
| Campylobacteriosis                                   | 24       | 17       | 186           | 4239         | 221                           | 222   | 203    |
| Cryptosporidiosis                                    | 4        | 2        | 18            | 341          | 29                            | 28    | 38     |
| Cyclosporiasis                                       | 1        | 3        | 4             | 176          | 7                             | 11    | 19     |
| <i>E. coli</i> Shiga Toxin (+)                       | 6        | 3        | 24            | 861          | 34                            | 36    | 26     |
| Giardiasis                                           | 1        | 4        | 26            | 695          | 59                            | 40    | 34     |
| Hemolytic Uremic Syndrome (HUS)                      | 0        | 1        | 2             | 24           | 2                             | 2     | 0      |
| Listeriosis                                          | 0        | 0        | 4             | 44           | 1                             | 2     | 3      |
| Salmonellosis                                        | 15       | 29       | 104           | 4628         | 220                           | 187   | 170    |
| Shigellosis                                          | 4        | 5        | 37            | 799          | 46                            | 55    | 35     |
| <b>D. Viral Hepatitis</b>                            |          |          |               |              |                               |       |        |
| Hepatitis A                                          | 0        | 0        | 0             | 97           | 1                             | 1     | 20     |
| Hepatitis B: Pregnant Woman +HBsAg                   | 1        | 0        | 5             | 300          | 4                             | 17    | 20     |
| Hepatitis B, Acute                                   | 4        | 1        | 10            | 355          | 32                            | 37    | 32     |
| Hepatitis C, Acute                                   | 4        | 9        | 49            | 1167         | 92                            | 104   | 117    |
| <b>E. Vectorborne/Zoonoses</b>                       |          |          |               |              |                               |       |        |
| Animal Rabies                                        | 1        | 0        | 1             | 73           | 1                             | 1     | 0      |
| Rabies, possible exposure                            | 34       | 27       | 198           | 5384         | 195                           | 180   | 134    |
| Chikungunya Fever                                    | 0        | 0        | 0             | 10           | 1                             | 0     | 0      |
| Dengue fever                                         | 2        | 1        | 5             | 267          | 10                            | 5     | 7      |
| Eastern Equine Encephalitis                          | 0        | 0        | 0             | 0            | 0                             | 0     | 0      |
| Lyme Disease                                         | 4        | 4        | 12            | 260          | 13                            | 21    | 11     |
| Malaria                                              | 0        | 0        | 0             | 32           | 2                             | 4     | 4      |
| West Nile Virus                                      | 0        | 0        | 0             | 7            | 1                             | 0     | 0      |
| Zika Virus Disease                                   | 0        | 0        | 0             | 0            | 0                             | 0     | 0      |
| <b>F. Others</b>                                     |          |          |               |              |                               |       |        |
| Hansens Disease (Leprosy)                            | 0        | 0        | 0             | 25           | 1                             | 1     | 0      |
| Legionellosis                                        | 4        | 3        | 31            | 460          | 36                            | 16    | 37     |
| Mercury Poisoning                                    | 0        | 0        | 0             | 27           | 0                             | 0     | 0      |
| <i>Vibrio</i> Infections                             | 1        | 2        | 19            | 279          | 29                            | 19    | 19     |
| Tuberculosis                                         | 4        | 2        | 19            | 457          | 25                            | 20    | 22     |
| <b>G. Sexually Transmitted Infections</b>            |          |          |               |              |                               |       |        |
| Chlamydia                                            | 306      | 334      | 2479          | 64016        | 3914                          | 4256  | 4054   |
| Gonorrhea                                            | 163      | 129      | 1063          | 23755        | 1803                          | 1802  | 1752   |
| Syphilis, Total                                      | 41       | 59       | 334           | 10628        | 582                           | 687   | 766    |
| Syphilis, Infectious (Primary and Secondary)         | 15       | 28       | 135           | 2006         | 287                           | 361   | 347    |
| Syphilis, Early Latent                               | 12       | 18       | 111           | 3444         | 146                           | 206   | 279    |
| Syphilis, Late Syphilis (Late Latent; Neurosyphilis) | 14       | 12       | 86            | 5025         | 142                           | 112   | 135    |
| Syphilis, Congenital                                 | 0        | 1        | 2             | 153          | 7                             | 8     | 5      |

\*YTD up to August 31, 2025

All data are provisional and subject to updates as new reports are received and reviewed.

\*\*includes travel and non-travel associated cases