

EPI WATCH

Monthly Epidemiology Newsletter

What to Know About Primary Amebic Meningoencephalitis (PAM)

Becky Bohinc, MPH, CPH

205 Dr. MLK Jr. St. N
St. Petersburg, FL 33701
727-824-6900

Director
Ulyee Choe, DO

Editor
Rachel Ilic, MPH, CPH, CIC
Rachel.Ilic@FLHealth.gov

Division of Disease Control and Health Protection

Disease Reporting

To report diseases and clusters of illness:
Phone: 727-824-6932
Fax: 727-484-3865
(excluding HIV/AIDS)

To report HIV/AIDS by mail:

Surveillance Room 3-138
205 Dr. MLK Jr St. N
St. Petersburg, FL 33701

Find us on Facebook:

www.facebook.com/HealthyPinellas

Follow us on X:

@HealthyPinellas

Each year, a rare but serious brain infection known as primary amebic meningoencephalitis (PAM) causes fatalities in the United States. The infection is caused by an amoeba, *Naegleria fowleri*, that thrives in heat and lives in fresh water such as lakes, rivers, and ponds. The organism attacks the brain by entering through the nose through activities such as diving or jumping into the water, which forces water up through the nasal cavity. Symptoms are consistent with meningitis beginning with fever, headache, stiff neck, photophobia and can progress to seizures and altered mental status. Infections are nearly 100% fatal and death often occurs within the first five days of illness. Between 1962-2024, there have been 167 cases of PAM reported in the US, of which only four people survived¹. The highly progressive illness highlights the urgency of seeking medical attention if you are someone you know has these symptoms and was recently exposed to fresh water². Clinicians should keep a high index of suspicion if there was an exposure to fresh water and if standard CSF studies are inconclusive. Immediately contact the Centers for Disease Control and Prevention consultation line (available 24/7) at 770-488-7100 if a patient is suspected to have PAM.

Keeping your head above water, plugging your nose when diving, and avoiding water during warmer months when the organism thrives can decrease the risk for infection. Individuals cannot become ill from swallowing fresh water or from contact with salt water. As there is no standard test to detect the levels of *Naegleria fowleri* in the water and presence of the organism can vary with the environmental conditions, individuals should always take precautions when swimming in fresh water. A recent fatality from PAM was reported in July 2025 among a resident of South Carolina with a suspected exposure to a lake.⁴

Reports over recent years have shown that individuals have also died from PAM after using tap water to rinse their nasal cavity. In June 2025, Texas reported a case among a previously healthy woman who died from PAM after using tap water from a RV water system in a nasal irrigation device.³ Take precautions to ensure water used is safe from these amoebas by only using distilled or sterile water or by bringing water to a rolling boil for at least one minute for elevations less than 6500 ft.

References:

- [1 www.cdc.gov/naegleria/about/index.html](https://www.cdc.gov/naegleria/about/index.html)
- [2 www.cdc.gov/meningitis/about/amebic-meningitis.html#cdc_disease_basics_treatment-treatment-and-recovery](https://www.cdc.gov/meningitis/about/amebic-meningitis.html#cdc_disease_basics_treatment-treatment-and-recovery)
- [3 https://abcnews.go.com/Health/rare-brain-eating-amoeba-after-texas-woman-dies/story?id=122648208](https://abcnews.go.com/Health/rare-brain-eating-amoeba-after-texas-woman-dies/story?id=122648208)
- [4 www.cbsnews.com/news/patient-dies-brain-eating-amoeba-south-carolina/](https://www.cbsnews.com/news/patient-dies-brain-eating-amoeba-south-carolina/)

Hurricane Preparedness 2025

By: Katherine Patino

HURRICANE PREPAREDNESS

MAKE A PLAN

BUILD A KIT

STAY INFORMED

The Atlantic Hurricane Season runs from June 1 to November 30¹. A hurricane is a type of tropical cyclone that forms over warm tropical or subtropical waters. They develop from tropical waves, and if conditions are right, they can strengthen into hurricanes. If a hurricane has the potential to threaten Pinellas County, Pinellas County Emergency Management coordinates with the Board of County Commissioners to determine whether to open Special Needs Shelters (SpNS) and general population shelters. SpNS are staffed by the Department of Health in Pinellas County, with mostly non-clinical staff and limited clinical staff².

Within Pinellas County, three Special Needs Shelters operate: Palm Harbor University High School, Dunedin Highland Middle School, and John Hopkins Middle School³. Special Needs Shelters can be activated during emergencies to provide mass care for individuals who

cannot stay safely at home or lack alternative options, such as staying with friends or family. SpNS are not meant to replace bedside medical care; their goal is to maintain an individual's health.

Clients needing limited medical assistance include those dependent on oxygen or electricity, those with light to moderate cognitive impairments, dialysis patients, and individuals needing help with mobility and medication². Pre-registration is recommended and can be completed through the Pinellas County Office of Emergency Management. For more details, visit <https://pinellas.gov/special-needs/>.

References:

¹<https://www.floridadisaster.org/rss-morning-sitrep2/hazards/hurricanes/>

² <https://pinellas.gov/special-needs/>

³ <https://pinellas.gov/emergency-information/public-shelters/>

Infection Prevention and Control in the School Setting

By: Joia Nolton, BS, RN, CIC

Respiratory and gastrointestinal infections are the leading cause of sickness in school age children and adults¹. Diseases such as influenza, COVID-19, streptococcal pharyngitis, norovirus and rotavirus often cause an increase in students being absent from school and staff having to miss work. A multilayered approach that includes hand hygiene, respiratory etiquette, and cleaning and disinfection can help prevent and control infectious diseases in schools.

Washing your hands with soap and water is one of the best ways to remain healthy and prevent the spread of infections². Alcohol-based hand sanitizer (ABHS) that contains at least 60% alcohol can be used when soap and water are not readily available. Education and monitoring of handwashing techniques with on-the-spot correction and feedback is beneficial.

Another multilayered approach includes respiratory etiquette that involves covering your mouth and nose with a tissue when coughing or sneezing³. If tissues are not available, you should cough or sneeze into your elbow and not your hands. Used tissues should be discarded in the trash after use.

Cleaning and disinfection of surfaces and high-touch areas using EPA-approved products can further reduce disease transmission⁴. High touch surfaces include doorknobs, light switches, sink handles, and countertops. A study that was conducted found that students in classrooms that had daily disinfection were less likely to report absenteeism due to illness compared to control classrooms⁵.

Practicing proper hand hygiene, respiratory etiquette, and cleaning and disinfection can help with creating safer environments that reduce infectious disease transmission and protect students, staff, and families.

Resources:

¹https://www.cdc.gov/orr/school-preparedness/infection-prevention/docs/IPC-Science-Brief_508.pdf

² <https://www.cdc.gov/clean-hands/about/index.html>

³ <https://www.cdc.gov/respiratory-viruses/prevention/hygiene.html>

⁴ <https://publications.aap.org/aapnews/news/29049/CDC-releases-new-guidance-on-preventing-infections>

⁵ <https://doi.org/10.1177/1059840509354383>

Select Reportable Diseases in Pinellas County

Disease	Pinellas		YTD Total		Pinellas County Annual Totals		
	Jul 2025	Jul 2024	Pinellas 2025	Florida 2025	2024	2023	2022
A. Vaccine Preventable							
Coronavirus 2019	1378	4006	5240	114507	19906	45495	110630
Measles	0	0	0	4	0	0	0
Mpox	1	1	1	23	12	6	155
Mumps	0	0	0	9	2	0	0
Pertussis	15	1	59	1016	38	1	2
Varicella	2	1	11	288	157	25	24
B. CNS Diseases & Bacteremias							
Creutzfeldt-Jakob Disease (CJD)	0	0	2	24	3	1	3
Meningitis (bacterial, cryptococcal, mycotic)	1	2	2	90	16	6	11
Meningococcal Disease	0	0	1	19	1	3	2
C. Enteric Infections							
Campylobacteriosis	34	22	145	3465	221	222	203
Cryptosporidiosis	3	4	14	285	29	28	38
Cyclosporiasis	2	1	3	111	7	11	19
<i>E. coli</i> Shiga Toxin (+)	1	2	18	715	34	36	26
Giardiasis	3	2	25	564	59	40	34
Hemolytic Uremic Syndrome (HUS)	1	0	2	22	2	2	0
Listeriosis	2	0	4	42	1	2	3
Salmonellosis	19	17	90	3822	220	187	170
Shigellosis	3	2	33	688	46	55	35
D. Viral Hepatitis							
Hepatitis A	0	1	0	89	1	1	20
Hepatitis B: Pregnant Woman +HBsAg	1	1	4	262	4	17	20
Hepatitis B, Acute	1	2	6	312	32	37	32
Hepatitis C, Acute	5	9	44	971	92	104	117
E. Vectorborne/Zoonoses							
Animal Rabies	0	0	0	62	1	1	0
Rabies, possible exposure	28	19	119	3604	195	180	134
Chikungunya Fever	0	0	0	5	1	0	0
Dengue fever	2	0	3	176	10	5	7
Eastern Equine Encephalitis	0	0	0	0	0	0	0
Lyme Disease	3	3	8	175	13	21	11
Malaria	0	0	0	26	2	4	4
West Nile Virus	0	0	0	2	1	0	0
Zika Virus Disease	0	0	0	0	0	0	0
F. Others							
Hansens Disease (Leprosy)	0	0	0	20	1	1	0
Legionellosis	3	4	27	385	36	16	37
Mercury Poisoning	0	0	0	26	0	0	0
<i>Vibrio</i> Infections	2	4	18	227	29	18	18
Tuberculosis	0	3	15	413	25	20	22
G. Sexually Transmitted Infections							
Chlamydia	331	328	2103	55643	3903	4256	4054
Gonorrhea	144	158	915	20524	1806	1802	1752
Syphilis, Total	38	43	280	8783	577	687	766
Syphilis, Infectious (Primary and Secondary)	23	23	113	1694	286	361	347
Syphilis, Early Latent	6	8	99	2771	144	206	279
Syphilis, Late Syphilis (Late Latent; Neurosyphilis)	9	12	66	4181	140	112	135
Syphilis, Congenital	0	0	2	137	7	8	5

*YTD up to July 31, 2025

**includes travel and non-travel associated cases

TB numbers are not available