

EPI WATCH

Monthly Epidemiology Newsletter

Raw Milk Consumption

Rachel Ilic, MPH, CPH, CIC

205 Dr. MLK Jr. St. N
St. Petersburg, FL 33701
727-824-6900

Director
Ulyee Choe, DO

Editor
Rachel Ilic, MPH, CPH, CIC
Rachel.Ilic@FLHealth.gov

**Division of Disease Control
and Health Protection**

Disease Reporting
To report diseases and clusters of illness:
Phone: 727-824-6932
Fax: 727-484-3865
(excluding HIV/AIDS)

To report HIV/AIDS by mail:
Surveillance Room 3-138
205 Dr. MLK Jr St. N
St. Petersburg, FL 33701

Find us on Facebook
www.facebook.com/HealthyPinellas

Follow us on X:
[@HealthyPinellas](https://twitter.com/HealthyPinellas)

Cow's milk pasteurization was introduced in Chicago in 1908 but wasn't widely adopted until 1916¹. Public health officials became concerned about bovine tuberculosis transmission from cow's milk to humans and estimated that as many as 10% of all human tuberculosis cases were caused by infection via milk consumption. In 1910, a tuberculosis epidemic spread through Illinois infecting over 300,000 cattle and because tuberculosis-free herd certifications became more difficult to manage, pasteurization became popular.

In 1924, the U.S. Public Health Service developed the Standard Milk Ordinance for voluntary adoption by state and local agencies and is now called the Grade "A" Pasteurized Milk Ordinance (PMO). More states began adopting the PMO approach in subsequent decades and infections from milk borne disease outbreaks decreased from 25% (prior to 1938) to less than 1% (2015).

While tuberculosis infections are less of a concern in the United States, there are other human pathogens that raw milk can be contaminated with. Several countries have monitored the presence of different type of pathogens in raw milk and some studies have identified almost a third of all milk samples contained at least 1 type of pathogen such as *Campylobacter jejuni*, *Salmonella*, *Brucella* and *Listeria monocytogenes*.

The FDA² notes that raw milk is particularly unsafe for children due to their vulnerability and susceptibility to certain pathogens including *E. coli* O157:H7 which can lead to the development of Hemolytic Uremic Syndrome (HUS). The FDA notes several claims for the benefits of raw milk and provides an explanation based on scientific literature [here](#).

The Centers for Disease Control and Prevention (CDC) notes the

risk for Influenza A (H5N1) infection from raw milk consumption and advises against consumption as a way to obtain antibodies to prevent future illness.³ H5N1 can be found in the mammary glands of cattle which can be passed to humans if pasteurization is not performed.

Raw milk can contain a variety of disease-causing pathogens and has frequently been identified as the source of disease outbreaks in the United States. Studies indicate over 200 recorded outbreaks since 1993 with recent investigations showing a 4-fold increase in outbreaks reported during 2007-2012¹. While the investigations are well documented, these numbers likely represent a small proportion of illnesses associated with raw milk consumption due to lack of healthcare seeking behavior for gastrointestinal related illnesses.

Resources:

¹<https://pmc.ncbi.nlm.nih.gov/articles/PMC4890836/>

²<https://www.fda.gov/food/buy-store-serve-safe-food/raw-milk-misconceptions-and-danger-raw-milk-consumption>

³ <https://www.cdc.gov/food-safety/foods/raw-milk.html>

Interim Evaluation of Respiratory Syncytial Virus Hospitalization Rates Among Infants and Young Children After Introduction of Respiratory Syncytial Virus Prevention Products—United States, October 2024–February 2025

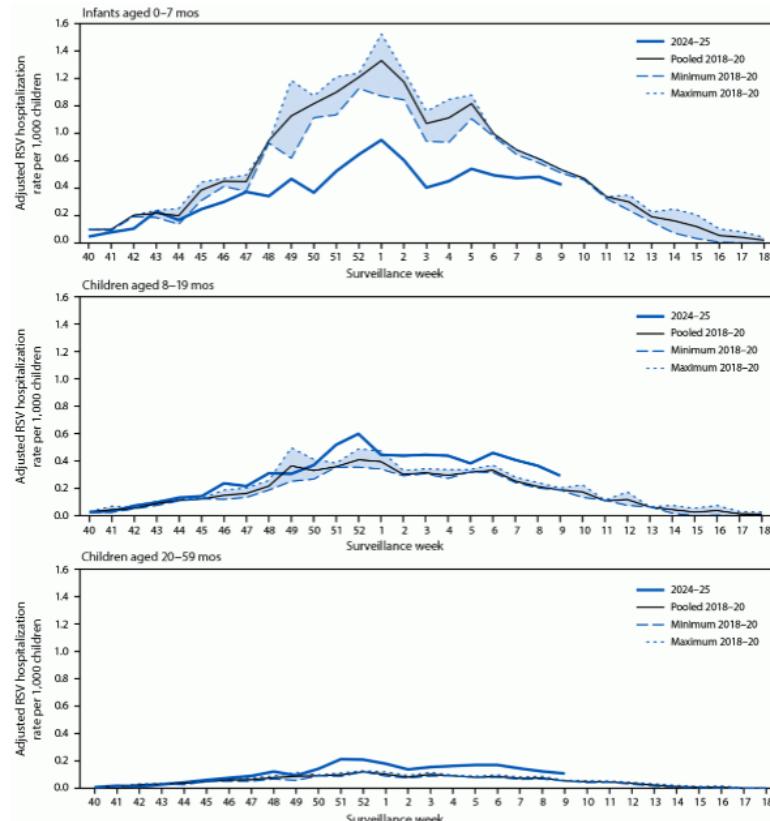
Weekly / May 8, 2025 / 74(16);273–281

FIGURE 1. Respiratory syncytial virus–associated hospitalization rates* among children aged <5 years, by age group and surveillance week – Respiratory Syncytial Virus–Associated Hospitalization Surveillance Network, United States, October–April 2018–20 and October–February 2024–25

Summary

What is already known about this topic?

Maternal respiratory syncytial virus (RSV) vaccine and nirsevimab, a long-acting monoclonal antibody, help prevent infant RSV-associated hospitalizations; these products became widely available in the United States during the 2024–25 RSV season.


What is added by this report?

In this ecologic analysis comparing RSV-associated hospitalization rates among infants aged 0–7 months during 2024–25 with those during pre–COVID-19 pandemic RSV seasons in two surveillance networks, rates during 2024–25 were lower by an estimated 28% and 43%.

What are the implications for public health practice?

In the first RSV season with widespread availability of maternal vaccine and nirsevimab, RSV-associated hospitalization rates among infants were lower than in prepandemic seasons. Effective health care planning is needed to protect infants as early in the RSV season as possible through maternal vaccination during pregnancy or infant receipt of nirsevimab.

For more information: https://www.cdc.gov/mmwr/volumes/74/wr/mm7416a1.htm?s_cid=mm7416a1_w

Trends in Suspected Fentanyl-Involved Nonfatal Overdose Emergency Department Visits, by Age Group, Sex, and Race and Ethnicity—United States, October 2020–March 2024

Weekly / May 8, 2025 / 74(16);282–287

Summary

What is already known about this topic?

Overdose deaths involving synthetic opioids including fentanyl increased during the past decade, with declines beginning in mid-2023. Data on nonfatal overdoses involving fentanyl are limited.

What is added by this report?

Fentanyl-involved nonfatal overdose emergency department (ED) visit rates increased in a majority of demographic groups from late 2020 through mid-2023, with highest rates and largest increases among non-Hispanic American Indian or Alaska Native persons. Overall rates increased 8.7% per quarter from quarter (Q) 4 2020 to Q3 2023, then declined 11.0% per quarter from Q3 2023 to Q1 2024.

What are the implications for public health practice?

Despite recent declining trends, fentanyl-involved nonfatal overdose ED visits remain high (a rate of 2.9 per 10,000 ED visits in Q1 2024, versus 1.4 in Q4 2020). ED interventions to increase naloxone access and availability and linkage to and retention in evidence-based care of persons who have experienced an overdose could reduce future nonfatal and fatal overdoses.

For more information: https://www.cdc.gov/mmwr/volumes/74/wr/mm7416a2.htm?s_cid=mm7416a2_w

Select Reportable Diseases in Pinellas County

Disease	Pinellas		YTD Total		Pinellas County Annual Totals		
	Apr 2025	Apr 2024	Pinellas 2025	Florida 2025	2024	2023	2022
A. Vaccine Preventable							
Coronavirus 2019	417	563	2543	49720	19907	45495	110632
Measles	0	0	0	2	0	0	0
Mpox	0	0	0	9	12	6	162
Mumps	0	0	0	7	2	0	0
Pertussis	12	0	27	481	38	1	2
Varicella	5	59	8	189	175	25	24
B. CNS Diseases & Bacteremias							
Creutzfeldt-Jakob Disease (CJD)	0	1	0	17	3	1	3
Meningitis (bacterial, cryptococcal, mycotic)	0	3	0	61	16	6	12
Meningococcal Disease	0	0	1	10	1	3	2
C. Enteric Infections							
Campylobacteriosis	41	18	83	1755	227	224	208
Cryptosporidiosis	1	1	7	142	30	28	38
Cyclosporiasis	0	0	0	8	7	11	21
<i>E. coli</i> Shiga Toxin (+)	1	3	9	338	34	37	26
Giardiasis	2	2	13	307	59	40	34
Hemolytic Uremic Syndrome (HUS)	0	0	1	13	2	2	0
Listeriosis	0	0	1	17	1	2	3
Salmonellosis	13	15	34	1675	226	194	174
Shigellosis	8	5	26	382	46	56	37
D. Viral Hepatitis							
Hepatitis A	0	0	0	57	1	1	20
Hepatitis B: Pregnant Woman +HBsAg	2	2	3	143	4	17	20
Hepatitis B, Acute	1	1	4	195	32	37	33
Hepatitis C, Acute	9	8	26	626	92	106	120
E. Vectorborne/Zoonoses							
Animal Rabies	0	1	0	34	1	1	0
Rabies, possible exposure	21	31	78	2443	249	227	151
Chikungunya Fever	0	0	0	1	1	0	0
Dengue fever	0	0	0	112	10	5	7
Eastern Equine Encephalitis	0	0	0	0	0	0	0
Lyme Disease	2	0	2	50	14	21	11
Malaria	0	0	0	11	2	4	4
West Nile Virus	0	0	0	0	1	0	0
Zika Virus Disease	0	0	0	0	0	0	0
F. Others							
Hansens Disease (Leprosy)	0	0	0	11	1	1	0
Legionellosis	5	4	14	202	36	16	38
Mercury Poisoning	0	0	0	15	0	0	0
<i>Vibrio</i> Infections	5	1	9	83	32	9	9
Tuberculosis	4	1	13	221	25	20	22
G. Sexually Transmitted Infections							
Chlamydia	260	327	1156	30919	3907	4256	4054
Gonorrhea	135	155	528	11357	1806	1802	1752
Syphilis, Total	31	57	171	4872	580	687	766
Syphilis, Infectious (Primary and Secondary)	13	27	63	963	286	361	347
Syphilis, Early Latent	11	12	70	1524	145	206	279
Syphilis, Late Syphilis (Late Latent; Neurosyphilis)	6	18	37	2313	142	112	135
Syphilis, Congenital	1	0	1	72	7	8	5

*YTD up to April 30, 2025

**includes travel and non-travel associated cases